Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial

Summary

Background Memantine has been used off-label to treat frontotemporal lobar degeneration (FTD). A previous 26-week open-label study suggested a transient, modest benefit on neuropsychiatric symptoms as measured by the neuropsychiatric inventory (NPI). We aimed to determine whether memantine is an effective treatment for FTD.

Methods We did a randomised, parallel group, double-blind, placebo-controlled trial of 20 mg memantine taken orally daily for 26 weeks in patients with FTD. Participants met Neary criteria for behavioural variant FTD (bvFTD) or semantic dementia and had characteristic brain atrophy. Use of acetylcholinesterase inhibitors was prohibited. Individuals were randomly assigned to receive either memantine or matched placebo tablets (1:1) in blocks of two and four patients. All patients and study personnel were masked to treatment assignment. Primary endpoints were the change in total NPI score and clinical global impression of change (CGIC) score after 26 weeks and were analysed by intention to treat. This study is registered with Clinicaltrials.gov, number NCT00545974.

Findings Of 100 patients screened, 81 were randomly assigned to receive memantine (39 patients) or placebo (42 patients). Five (6%) patients discontinued, and 76 completed the 26-week treatment. Enrolment numbers were lower than planned because of many patients’ preference to take memantine or cholinesterase inhibitors off-label rather than participate in a clinical trial. Memantine treatment had no effect on either the NPI (mean difference 2.2, 95% CI –3.9 to 8.3, p=0.47) or CGIC (mean difference 0.0, –0.4 to 0.4, p=0.90) after 26 weeks of treatment. Memantine was generally well tolerated; however, patients in the memantine group had more frequent cognitive adverse events (six patients) than those in the placebo group (one).

Interpretation Memantine treatment showed no benefit in patients with FTD. These data do not support memantine use in FTD.

Introduction Frontotemporal lobar degeneration or frontotemporal degeneration (FTD) is a common cause of dementia in individuals who develop symptoms before age 65 years. FTD encompasses three core clinical syndromes—behavioural variant frontotemporal dementia (bvFTD), and two primary progressive aphasias (PPA): semantic dementia and progressive non-fluent aphasia (PNA).1 BvFTD is the most common form of the disease and features prominent social and behavioural deficits as well as executive dysfunction. Semantic dementia often begins as aphasia, with progressive semantic knowledge loss, but also often features prominent behavioural abnormalities similar to bvFTD.2 Progressive non-fluent aphasia presents as a motor speech disorder with few other cognitive or behavioural impairments. No medications have been approved by the US Food and Drug Administration (FDA) to treat FTD, and only a handful of randomised, placebo-controlled trials have been done in FTD.3 Despite the absence of efficacy data supporting the use of drugs approved for the treatment of Alzheimer’s disease, such drugs are frequently prescribed to patients with FTD off-label in the USA, with 55% of patients in a recent study4 using either an acetylcholinesterase inhibitor or memantine.

Memantine is approved by the European Medicines Agency and the FDA for the treatment of moderate-to-severe Alzheimer’s disease and has also shown beneficial effects in clinical trials of vascular dementia, Parkinson’s-related dementias, and dementia of mixed causes (reviewed in Kalia and colleagues5). Although the neuropathological changes and underlying neurotransmitter deficits are different in FTD than in Alzheimer’s disease, a scientific rationale exists for the use of memantine to treat FTD. First, memantine is believed to act as a non-competitive inhibitor of NMDA receptors, which might be overactivated in various neurodegenerative diseases, including FTD.6 Second, analyses of data from clinical trials of memantine in Alzheimer’s disease showed clear benefits on various abnormal behaviours, as assessed by the neuropsychiatric inventory (NPI).7 Since many of these behaviours are
prominent features of FTD, memantine might also be predicted to improve these deficits. Third, several open-label treatment studies in bvFTD and semantic dementia have shown symptomatic improvements with memantine treatment.7,8 In one of these studies,7 we showed that initiation of memantine treatment was associated with a transient improvement in behaviour as measured by the NPI in patients with bvFTD and semantic dementia.8 Since the transient improvement in NPI scores might have been attributable to a placebo effect or an effect of memantine treatment, the present study tested the hypothesis that memantine would improve or stabilise behaviour as measured by the NPI and clinical global impression of change (CGIC) compared with placebo, after 26 weeks of treatment.

Methods
Study design and participants
In this multicentre, randomised, double-blind, placebo-controlled trial, we recruited patients from nine US academic dementia research centres with expertise in the diagnosis of FTD (University of California, San Francisco [UCSF] and Los Angeles [UCLA]; Mayo Clinic, Rochester and Jacksonville; Northwestern University Medical Center; Case Western Reserve Medical Center; University of North Carolina; Johns Hopkins University; and University of Pennsylvania). Study visits occurred between Dec 12, 2007, and May 7, 2012. Because this study was a follow-up to a 26-week open-label study of memantine that showed a similar pattern of changes in bvFTD and semantic dementia, but not progressive non-fluent aphasia,4 the present study only included patients with bvFTD or semantic dementia.1 Individuals with FTD-motor neuron disease were included if motor impairments did not interfere with study procedures. Individuals had to be aged between 40 and 80 years and have a mini-mental state examination (MMSE) score of 15 or higher at screening. To exclude cases with slowly progressive bvFTD (bvFTD phenocopy), all patients had to have a CT or MRI scan of the brain within 24 months before randomisation consistent with a diagnosis of bvFTD or semantic dementia.11 All patients had a reliable caregiver who could accompany them to study visits. Exclusion criteria included a diagnosis of progressive non-fluent aphasia, and use of memantine, acetylcholinesterase inhibitors, antipsychotic drugs, valproate, lithium, or benzodiazepines within 4 weeks before randomisation. Use of acetylcholinesterase inhibitors was prohibited because of potential confounding effects on memantine efficacy and reported adverse reactions in FTD.12,13 If behavioural symptoms became difficult to control after the baseline visit, individuals were allowed to take an atypical antipsychotic medication (olanzapine, quetiapine, or risperidone). Antidepressant use was allowed, if the dose had been stable for 1 month preceding randomisation. Another exclusion criterion was the evidence of disorders that preclude diagnosis of FTD.1 Written informed consent was obtained from the patient and their caregiver in accordance with local institutional review board (IRB) regulations.

Randomisation and masking
Patients were randomly assigned to receive twice daily either memantine 10 mg or placebo (1:1). Randomisation codes were generated by an unmasked UCSF pharmacist (SF) with the Excel (Microsoft Office) random number generator in blocks of two and four patients. Kits were given sequential numbers that corresponded to the randomisation key that was maintained in a secure location by the UCSF Investigational Pharmacy. When randomised, each successive participant was assigned by the electronic Clinical Trial Management System to the next numbered kit in sequence at each site. Tablets containing memantine 10 mg or placebo with no memantine (identical tablets) were packaged into kits (one per patient) of several blister packs (1 week of treatment per pack). All patients and study personnel were masked to treatment assignment.

Procedures
Every patient participated in six study visits over roughly 35 weeks. After the screening visit, a randomisation or baseline visit occurred within 35 days, during which initial study medication was dispensed. Individuals were titrated to the full dose of 10 mg memantine or placebo taken orally twice daily, by 5 mg per week, reaching the full dose at week 4. Patients returned at weeks 6, 12, and 26 (or early termination) for safety and efficacy assessments.
Outcomes

The primary outcomes were the NPI and CGIC. The NPI is a measure that assesses 12 neuropsychiatric abnormalities that reveal severe abnormalities in FTD. The CGIC is a seven point categorical scale that gives a global impression of change from baseline. Secondary outcomes were the Zarit burden interview (ZBI 22), a 22 item questionnaire used to measure caregiver burden, and subject weight in kg (since patients with FTD often gain weight).

Statistical analysis

We based our sample size calculation on a comparison of changes in NPI from baseline to follow-up between the memantine treatment and placebo groups using a two sample t test. We hoped to detect a medium effect size of half a standard deviation. Standard power

Additionally to the in-person visits, on weeks 3, 9, and 18, individuals received a phone call to assess adverse events and study medication compliance. After the visit on week 26, the study medication was stopped, and individuals returned for a 30-day off-drug safety assessment. Compliance was assessed by counting study medication remaining in the blister packs. We assessed all outcome measures at baseline and at week 26, with a subset of measures obtained at weeks 6 and 12. We grouped adverse events by Medical Dictionary for Regulatory Activities (MedRA) system organ class. Serious adverse events were defined as those leading to hospital admission or death.

The primary outcomes were the NPI and CGIC. The NPI is a measure that assesses 12 neuropsychiatric abnormalities that reveal severe abnormalities in FTD. The CGIC is a seven point categorical scale that gives a global impression of change from baseline. Secondary efficacy assessments included the clinical dementia rating sum of boxes (CDR-SB-FTD), with behavioural comportment, personality, and language domains added to better capture FTD-related deficits; the functional activities questionnaire (FAQ); Texas functional living scale (TFLS), a performance-based assessment of capacity to perform activities of daily living; the executive interview (EXIT25), a neuropsychological composite to test executive function; a modified unified Parkinson's disease rating scale (UPDRS), the time to initiation of antipsychotic therapy; and a neuropsychological battery, including a California verbal learning test, category fluency, phonemic fluency, a 15 item Boston naming test (BNT), a modified trails set-shifting task, backward digit span, and the digit symbol as previously described (data for backward digit span and modified trails not shown). Tertiary outcomes were the Zarit burden interview (ZBI 22), a 22 item questionnaire used to measure caregiver burden, and subject weight in kg (since patients with FTD often gain weight).

Statistical analysis

We based our sample size calculation on a comparison of changes in NPI from baseline to follow-up between the memantine treatment and placebo groups using a two sample t test. We hoped to detect a medium effect size of half a standard deviation. Standard power

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Placebo (n=33)</th>
<th>Semantic dementia (n=9)</th>
<th>All (n=42)</th>
<th>Memantine (n=31)</th>
<th>Semantic dementia (n=8)</th>
<th>All (n=39)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men (%)*</td>
<td>28 (85%)</td>
<td>4 (44%)</td>
<td>32 (76%)</td>
<td>14 (45%)</td>
<td>5 (62%)</td>
<td>19 (49%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.6 (62.8 to 68.4)</td>
<td>68.6 (63.4 to 73.7)</td>
<td>66.2 (63.8 to 68.6)</td>
<td>65.6 (62.7 to 68.3)</td>
<td>67.0 (62.5 to 71.5)</td>
<td>65.8 (63.5 to 68.1)</td>
</tr>
<tr>
<td>Education (years)</td>
<td>15.4 (14.4 to 16.4)</td>
<td>15.0 (12.2 to 17.2)</td>
<td>15.3 (14.5 to 16.2)</td>
<td>15.7 (14.8 to 16.7)</td>
<td>15.8 (13.0 to 18.5)</td>
<td>15.7 (14.9 to 16.6)</td>
</tr>
<tr>
<td>Disease duration (years)</td>
<td>3.5 (2.6 to 4.4)</td>
<td>2.8 (13.4 to 4.3)</td>
<td>3.2 (2.8 to 4.1)</td>
<td>3.0 (2.1 to 4.0)</td>
<td>2.8 (1.6 to 3.9)</td>
<td>3.0 (2.2 to 3.7)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>90.6 (83.4 to 97.8)</td>
<td>71.1 (64.9 to 77.2)</td>
<td>86.2 (80.0 to 92.4)</td>
<td>81.8 (75.3 to 88.3)</td>
<td>76.2 (61.4 to 90.9)</td>
<td>80.6 (74.9 to 86.3)</td>
</tr>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPI</td>
<td>22.2 (16.2 to 28.3)</td>
<td>18.6 (13.8 to 23.4)</td>
<td>21.5 (15.7 to 27.3)</td>
<td>21.1 (16 to 26.2)</td>
<td>18.8 (15 to 22.6)</td>
<td>20.6 (15 to 25.4)</td>
</tr>
<tr>
<td>CGIC</td>
<td>3.3 (3.1 to 3.5)</td>
<td>3.3 (3.2 to 3.4)</td>
<td>3.3 (3.1 to 3.5)</td>
<td>3.5 (3.2 to 3.8)</td>
<td>3.4 (3.2 to 3.6)</td>
<td>3.5 (3.2 to 3.8)</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR-SB-FTD</td>
<td>4.8 (4.0 to 5.6)</td>
<td>3.0 (1.7 to 4.3)</td>
<td>4.4 (3.7 to 5.1)</td>
<td>5.8 (4.5 to 7.1)</td>
<td>3.8 (1.5 to 6.0)</td>
<td>5.4 (4.2 to 6.5)</td>
</tr>
<tr>
<td>FAQ</td>
<td>15.8 (13.2 to 18.3)</td>
<td>7.4 (9.9 to 13.9)</td>
<td>14.1 (11.6 to 16.6)</td>
<td>14.7 (11.9 to 17.4)</td>
<td>8.5 (11.1 to 15.9)</td>
<td>13.4 (10.8 to 16.0)</td>
</tr>
<tr>
<td>TFLS</td>
<td>40.2 (37.5 to 42.9)</td>
<td>42.1 (36.3 to 47.9)</td>
<td>40.6 (38.3 to 43.0)</td>
<td>38.3 (34.2 to 42.4)</td>
<td>43.8 (39.4 to 48.1)</td>
<td>39.4 (36.1 to 42.8)</td>
</tr>
<tr>
<td>MMSE</td>
<td>25.0 (23.7 to 26.3)</td>
<td>25.2 (21.2 to 29.1)</td>
<td>25.1 (23.8 to 26.3)</td>
<td>24.0 (22.1 to 25.8)</td>
<td>25.8 (22.7 to 28.8)</td>
<td>24.3 (22.8 to 25.9)</td>
</tr>
<tr>
<td>EXIT25</td>
<td>17.2 (14.3 to 20.1)</td>
<td>16.7 (10.7 to 22.6)</td>
<td>17.1 (14.6 to 19.6)</td>
<td>17.0 (13.3 to 20.7)</td>
<td>14.0 (7.5 to 20.5)</td>
<td>16.3 (13.2 to 19.4)</td>
</tr>
<tr>
<td>Letter fluency</td>
<td>6.5 (5.0 to 8.0)</td>
<td>7.9 (4.2 to 11.6)</td>
<td>6.8 (5.4 to 8.2)</td>
<td>6.1 (4.3 to 7.8)</td>
<td>5.6 (4.1 to 7.1)</td>
<td>6.0 (4.6 to 7.4)</td>
</tr>
<tr>
<td>Category fluency</td>
<td>11.2 (5.8 to 16.6)</td>
<td>7.5 (1.3 to 13.7)</td>
<td>10.2 (6.2 to 14.2)</td>
<td>9.1 (5.8 to 12.5)</td>
<td>9.0 (4.5 to 13.5)</td>
<td>9.1 (6.6 to 11.5)</td>
</tr>
<tr>
<td>Digit symbol</td>
<td>37.8 (31.3 to 44.3)</td>
<td>45.0 (36.5 to 53.4)</td>
<td>39.3 (34.0 to 44.7)</td>
<td>34.2 (24.6 to 43.7)</td>
<td>55.5 (42.5 to 69.0)</td>
<td>38.6 (30.3 to 46.9)</td>
</tr>
<tr>
<td>Digits backwards</td>
<td>3.5 (3.0 to 4.0)</td>
<td>4.2 (3.0 to 5.4)</td>
<td>3.6 (3.2 to 4.1)</td>
<td>3.4 (2.8 to 4.0)</td>
<td>4.1 (3.2 to 5.1)</td>
<td>3.6 (3.0 to 4.1)</td>
</tr>
<tr>
<td>Boston naming test</td>
<td>12.2 (11.2 to 13.2)</td>
<td>6.2 (5.2 to 10.0)</td>
<td>10.8 (9.5 to 12.2)</td>
<td>12.9 (11.1 to 14.7)</td>
<td>7.9 (5.3 to 12.4)</td>
<td>11.9 (10.1 to 13.6)</td>
</tr>
<tr>
<td>UPDRS</td>
<td>3.2 (1.2 to 5.3)</td>
<td>3.4 (1.2 to 8.1)</td>
<td>3.2 (1.5 to 5.0)</td>
<td>2.9 (0.4 to 5.4)</td>
<td>0.9 (0.6 to 2.3)</td>
<td>2.4 (0.5 to 4.3)</td>
</tr>
<tr>
<td>Tertiary outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZBI 22</td>
<td>32.5 (27.8 to 37.3)</td>
<td>31.7 (24.7 to 38.6)</td>
<td>32.4 (28.5 to 36.2)</td>
<td>28.3 (23.0 to 33.7)</td>
<td>30.5 (18.6 to 42.4)</td>
<td>28.8 (24.1 to 33.4)</td>
</tr>
</tbody>
</table>

Data are mean (95% CIs) unless otherwise stated. bvFTD=behavioural variant frontotemporal dementia. NPI=neuropsychiatric inventory. CGIC=clinical global impression of change. CDR-SB-FTD=clinical dementia rating sum of boxes modified to better capture FTD-related deficits. FAQ=functional activities questionnaire. TFLS=Texas functional living scale. MMSE=mini-mental state examination. EXIT25=executive interview. UPDRS=modified unified Parkinson's disease rating scale. ZBI 22=Zarit burden interview. *The placebo group had more men at baseline than did the memantine group (p=0.011, χ²).

Table 1: Baseline characteristics
calculations for two sample t tests (α=0·05) with an SD of 2·2 (half of 4·4 from Boxer and colleagues) show that a sample of 65 patients per group would provide power greater than 80% to detect this difference. The planned enrolment for the study was 140 participants.

We analysed primary and secondary outcomes using an intention-to-treat approach that included all patients who received at least one dose of medication and had a post-baseline efficacy assessment. We used a repeated measures approach to assess the difference in changes over time in the repeated primary (NPI) and secondary outcomes between the memantine and placebo groups, that is, the time by treatment group interaction. Specifically, for every patient, we computed changes in outcomes between baseline and the 26-week follow-up and assessed the magnitude of the difference in these changes using linear regression methods. We repeated analyses using sex as a covariate. It was decided post hoc to reduce the CGIC values to “improved, no change, or worsened” because of the very few responses outside the middle three values. We compared CGIC values at week 26 using a Mann-Whitney U test. We did exploratory analyses in each FTD subtype and observed cases (patients who completed all four efficacy visits) to investigate potential sources of bias in the intention-to-treat analyses. Finally, we compared differences in outcome measures at individual timepoints using least squares means with a two-sample t test, and analysed differences in frequencies of adverse events using χ² tests. Analyses were done with SAS 9·3 (SAS Inc, Cary, NC) or Stata 12 (StataCorp, College Station, TX). This study is registered with Clinicaltrials.gov, number NCT00545974.

Role of the funding source

This was an investigator-initiated study that was designed by the authors and managed by the UCSF Memory and Aging Center Clinical Trials Program. The study was funded by Forest Research Institute (FRI), the research arm of Forest Laboratories, the company that manufactures and markets memantine for treatment of Alzheimer’s Disease in the US. Additionally to funding, FRI provided memantine and matched placebo tablets to the UCSF Investigational Pharmacy, which created blister packs to improve compliance, monitored lot expiration, and resupplied sites. FRI had no role in study design, data collection, analysis or interpretation. All data were available to and the manuscript was written by the corresponding author with assistance from other authors. FRI had no role in manuscript preparation.

Results

Of the 100 patients assessed for eligibility, 81 patients (64 with bvFTD and 17 with semantic dementia) were randomly assigned to memantine (39 patients) or placebo (42 patients; figure 1). Five patients (two given memantine, three given placebo) discontinued treatment before the end of the study (figure 1). Despite randomisation, the placebo group contained more men than the memantine group (table 1; p=0·01). There were no other baseline differences in demographic variables, concomitant medication use, or outcome measures (table 1, appendix). 17 (44%) of 39 patients given memantine and 13 (31%) of 42 patients given placebo took 100% of the study medication (p=0·24); for the remaining patients, mean medication compliance was 95·6% (95% CI 92·3–97·3) in the placebo group and 94·8% (93·0–98·2) in the memantine group.

In the intention-to-treat analysis, the change in total NPI or CGIC scores after 26 weeks did not differ between the memantine and placebo groups (table 2, figure 2). A post-hoc adjustment for baseline sex differences did not alter the result (appendix). The CGIC showed that at week 26, 27 patients worsened, eight remained stable, and four improved in the memantine group, whereas 29 patients worsened, eight remained stable, and four improved in the placebo group (p=0·90; figure 2).

We noted no treatment effect on the functional outcome measures, the CDR-SB-FTD, FAQ, and TFLS (table 2). CDR-SB-FTD scores increased similarly in both groups by 1·5 (95% CI 0·8–2·1) points over 26 weeks (figure 3). Performance on the FAQ and TFLS declined similarly in the placebo and memantine groups (table 2).

Table 2: Mean differences in longitudinal change from baseline

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Difference (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPI</td>
<td>2·2 (-3·9 to 8·3)</td>
<td>0·47</td>
</tr>
<tr>
<td>CGIC</td>
<td>0·0 (-0·4 to 0·4)</td>
<td>0·90</td>
</tr>
<tr>
<td>Secondary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDR-SB-FTD</td>
<td>0·0 (-0·9 to 0·9)</td>
<td>0·99</td>
</tr>
<tr>
<td>FAQ</td>
<td>-1·5 (-4·0 to 1·0)</td>
<td>0·23</td>
</tr>
<tr>
<td>TFLS</td>
<td>0·9 (-1·7 to 3·5)</td>
<td>0·49</td>
</tr>
<tr>
<td>Cognitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>0·1 (-1·3 to 1·5)</td>
<td>0·69</td>
</tr>
<tr>
<td>EXIT25</td>
<td>-1·2 (-3·8 to 1·4)</td>
<td>0·34</td>
</tr>
<tr>
<td>Letter fluency</td>
<td>-0·2 (-1·5 to 1·1)</td>
<td>0·75</td>
</tr>
<tr>
<td>Category fluency</td>
<td>0·4 (-1·7 to 2·4)</td>
<td>0·72</td>
</tr>
<tr>
<td>Digit symbol</td>
<td>8·1 (1·1 to 15·1)</td>
<td>0·024</td>
</tr>
<tr>
<td>Digits backwards</td>
<td>-0·3 (-0·8 to 0·2)</td>
<td>0·28</td>
</tr>
<tr>
<td>Boston naming test</td>
<td>2·2 (0·7 to 3·6)</td>
<td>0·004</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPDRS</td>
<td>-0·3 (-3·0 to 2·4)</td>
<td>0·83</td>
</tr>
</tbody>
</table>

Mean difference is placebo group minus memantine group. NPI=nutropsychiatric inventory. CGIC=clinical global impression of change. CDR-SB-FTD=clinical dementia rating sum of boxes. FAQ=functional Activities Questionnaire. TFLS=Texas functional living scale. MMSE=mini-mental state examination. EXIT25=executive interview. UPDRS=modified unified Parkinson’s disease rating scale. ZBI 22=Zarit burden interview.
The memantine group displayed worse neuropsychological performance than the placebo group on tests of naming (BNT) and processing speed (digit symbol; figure 4, table 2). The groups did not differ on other neuropsychological composite (MMSE and EXIT25) and individual test (letter fluency, category fluency, digit symbol, digits backwards, Boston naming test) scores (table 2). Consistent with the effects we observed on neuropsychological tests, we noted numerically more cognitive adverse events (confusion, memory loss, language disorders) in the memantine group than the placebo group (six vs one; p=0·056, table 3, appendix) whereas the opposite was true for psychiatric adverse events (eight vs 16; p=0·03). Two individuals experienced a serious adverse event in the placebo group (diverticulitis leading to hospital admission and vasovagal episode) and one individual experienced two serious adverse events in the memantine group (right-sided facial weakness and loss of consciousness, both leading to hospital admission). Serious adverse events were not judged to be related to treatment. UPDRS (table 2) and safety assessments did not differ between groups (data not shown; appendix). Since only three patients began an antipsychotic medication during the study (appendix), time to antipsychotic use was not analysed. With respect to tertiary outcomes, treatment did not have an effect on caregiver burden (ZBI, p=0·13) or change in weight (data not shown).

Because we had previously observed a transient improvement in NPI scores in an open-label memantine treatment study,8 we examined in a post-hoc analysis the differences in NPI scores at individual timepoints and noted a transient improvement (mean difference 5·9, 95% CI 4·2–7·6) at week 6 (p=0·01) that converged with changes in the placebo group at weeks 12 and 26 (p>0·30; figure 2).

We also investigated whether the effects we noted on the BNT and digit symbol tests were related to FTD subtype. When analysed separately, BNT performance was worse in both the bvFTD and semantic dementia groups after 26 weeks (appendix). On the digit symbol test, the placebo group showed a small improvement in performance after 26 weeks of treatment, whereas the memantine group worsened (MD 8·1, 95% CI 1·1–15·1, p=0·001; figure 4).

![Figure 2: Primary outcome variables](image)

Figure 2: Primary outcome variables
NPI=neuropsychiatric inventory. CGIC=clinician’s global impression of change.
(A) Change from baseline of total NPI scores from the intention-to-treat population are shown with p values for a paired t test at every study visit. Groups did not differ in the repeated measures analysis (p=0·47). (B) CGIC values are shown at week 26 for 76 patients who completed this visit. Only improved (includes slightly improved category), no change, and worsened (includes slightly worsened category) are shown since no other values were recorded. No difference was noted in CGIC distributions with a Mann Whitney U test (p=0·90).

![Figure 3: Functional rating scales](image)

Figure 3: Functional rating scales
(A) Change from baseline functional activities questionnaire (FAQ) scores in the intention-to-treat population. (B) Change from baseline in clinical dementia rating sum of boxes (CDR-SB-FTD) scores in the intention-to-treat population.
Discussion

We noted no benefit of 20 mg daily memantine treatment in FTD on either of the primary outcome measures—the NPI, or the CGIC—after 26 weeks of treatment. There was evidence of worse cognitive performance on tests of naming (BNT) and processing speed (digit symbol) associated with memantine treatment, and a suggestive increase in cognitive adverse events compared with the placebo group. However, the worse neuropsychological performance in the memantine group was not associated with a difference in the rate of decline in activities of daily living as measured by CDR-SB-FTD, FAQ, and TFLS. Although memantine was safe and well tolerated in patients with FTD, our results do not support a claim of benefit for memantine treatment in FTD. Since about 30% of patients with bvFTD in the USA take memantine,

4 our findings have immediate implications in public health. Our results are similar to those from a recent 52-week randomised placebo-controlled trial of memantine in 49 patients with bvFTD that also showed no benefit on the primary outcome, the clinician’s interview-based impression of change (ie, CIBICplus; similar to the CGIC) or the NPI.20 Similar to the previous study, a major limitation of the present study was that we failed to enrol the planned number of patients, which might have limited our ability to detect a treatment effect. This under-enrolment was due to many patients’ preference to take memantine (and in many cases an acetylcholinesterase inhibitor as well) rather than participate in a clinical trial during which they risked being randomly assigned to placebo. Unfortunately, altering the enrolment criteria to allow use of these medications would have prevented us from testing our hypothesis that memantine might have benefit in the treatment of FTD. Instead, to improve recruitment, sites stressed equipoise about the efficacy of memantine when recruiting patients. A second limitation of the study was the small size of the semantic dementia group, which limits the generalisability of our results to this FTD syndrome. Finally, since this trial was designed, several rating scales that better capture FTD-specific behaviours have been developed that might have been more sensitive to potential benefits of memantine than those we used.21

Despite these limitations, we believe that our study provides strong evidence that memantine is not an effective treatment for FTD. First, in an exploratory analysis, there was a transient improvement in NPI scores after 6 weeks of treatment that was similar in magnitude and timecourse to what we observed in a
previous open-label treatment study (34 patients with bvFTD and semantic dementia)\(^1\) suggesting that the pattern of changes observed on the NPI (figure 2) did not arise by chance. Second, we did a study-level meta-analysis, combining 6-month CGIC data from the current study and 12-month CIBICplus data presented in the report from the previous bvFTD clinical trial.\(^{31}\) for a combined total of 64 patients receiving placebo and 55 receiving memantine. This meta-analysis found no difference between placebo and memantine on the combined global impression (mean difference 0·082, 95% CI –0·18 to 0·34; \(p=0·553\)). Third, we observed worse visuomotor (digit symbol task) and naming function in the memantine group in the pre-specified analyses (table 2). Consistent with these findings, the memantine group had a greater number of cognitive adverse events than did the placebo group (table 3). Finally, the rate of decline in CDR-SB-FTD scores was identical in both groups, and numerically, FAQ scores seemed to decrease more rapidly in the memantine group at week 12 (figure 3), although, similar to the analysis of NPI scores at 6 weeks, this was an exploratory finding that should be interpreted with caution.

We found fewer psychiatric (behavioural) side-effects in the memantine group than the placebo group (table 3). The simplest explanation for the divergent effects of memantine we noted in this study would be that memantine had a general suppressive effect on attention and cognition that led to less distressing behaviour as well as a reduced ability to perform visuomotor processing and lexical retrieval tasks.

Our study suggests that patients with FTD might respond differently to memantine than do patients with other forms of dementia, underscores the importance of accurate diagnosis. In moderate-to-severe Alzheimer’s disease, memantine has shown benefits on global and cognitive function alone or in combination with donepezil.\(^{23}\) Although a pilot study of memantine in PPA (not differentiated by subtype) suggested a modest benefit of treatment on the Western aphasia battery,\(^{24}\) some forms of PPA are due to underlying Alzheimer’s disease pathological changes, which could explain this finding. Clinical trials of memantine for vascular dementia also suggest a modest benefit on cognition in patients with mild-to-moderate impairment.\(^{25}\) Results from two clinical trials\(^{25,26}\) of memantine in Parkinson’s-related dementia showed efficacy for treatment of cognitive and behavioural symptoms.\(^{25,26}\) We speculate that the absence of benefit of memantine treatment in FTD could indicate a different pattern of neurotransmitter abnormalities in this disorder.\(^1\)

This is, to the best of our knowledge, the largest randomised placebo-controlled trial done in FTD so far (panel). In addition to the implications for the current treatment of FTD, we show that clinical trials are feasible in this disorder. Since about half of all FTD cases have underlying tau patho logical changes, as in Alzheimer’s disease, it has been suggested that tau-directed therapeutics might eventually be used in both disorders.\(^6\) We showed that the rate of decline as measured by the CDR-SB-FTD was about twice as fast as has been reported for the CDR-SB in Alzheimer’s disease.\(^7\) The more rapid progression of FTD as compared with Alzheimer’s disease might allow for faster clinical trials in FTD than in Alzheimer’s disease to test the efficacy of therapies targeting proteins such as tau that are common to both disorders.\(^3\) This study provides clear evidence of a lack of efficacy of memantine treatment for mild-to-moderate FTD, stressing the urgent need to develop more effective FTD therapeutics.

Contributors

ALB obtained funding, designed and supervised the study, and wrote the report. DSK, DIK, MG, CO, NG-R, and MM participated in study design, enrolled patients at their sites, reviewed and made substantive comments on the report. DK enrolled patients at her site, and reviewed and made substantive comments on the report. AL and C-KW participated in study design, including the statistical analysis plan; he supervised JU in her statistical analysis. MMM supervised study conduct and reviewed the report. JS participated in study design, enrolled patients at their sites, reviewed and made substantive comments on the report. MK participated in study design, helped supervise study conduct and reviewed the report. ALB obtained funding, designed and supervised the study, and wrote the report. DSK, DIK, MG, CO, NG-R, and MM participated in study design, enrolled patients at their sites, reviewed and made substantive comments on the report. AL and C-KW participated in study design, including the statistical analysis plan; he supervised JU in her statistical analysis. MMM participated in patient recruitment and evaluation, reviewed the final report, and provided substantive feedback. BLM participated in conceptualisation of the study, recruiting patients, and revising the report.
Articles

Conflicts of interest
ALB has been a consultant for Plexikkon, Pilororon, Registrat-Mapi, Envivo, Neurophage, TauRx, Archer, and Iperian; receives research support from Allon Therapeutics, Bristol-Myers Squibb, EnVivo, Janssen, Forest, Pfizer, and Genentech; and is funded by NIH grants R01AG038701, R01AG031278, the John Douglas French Foundation, the Alzheimer’s Drug Discovery Foundation, the Association for Frontotemporal Degeneration, the Silicon Valley Foundation, the Alzheimer’s Drug Discovery Foundation, the Association for Janssen, Forest, Pfizer, and Genentech; and is funded by NIH grants support from Allon Therapeutics, Bristol-Myers Squibb, EnVivo, Envivo, Neurophage, TauRx, Archer, and Iperian; receives research ALB has been a consultant for Plexikkon, Phloronol, Registrat-Mapi,

References
1 Neary D, Snowden JS, Gustafson L, et al. Frontotemporal lobar
degeneration: a consensus on clinical diagnostic criteria. Neurology
2 Rosen HJ, Allison SC, Ogar JM, et al. Behavioral features in
semantic dementia vs other forms of progressive aphasias.
3 Huey ED, Putnam KT, Grafman J. A systematic review of
neurotransmitter deficits and treatments in frontotemporal
frontotemporal dementia. Am J Alzheimers Dis Other Demen
5 Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical
6 Cummings JL, Schneider E, Tariot PN, Graham SM. Behavioral
effects of memantine in Alzheimer disease patients receiving
7 Swanberg MM. Memantine for behavioral disturbances in
frontotemporal dementia: a case series. Alzheimer Dis Assoc Disord
8 Boxer AL, Lipton AM, Womack K, et al. An open label study of
memantine treatment in 3 subtypes of frontotemporal lobar
9 Cummings JL. The Neuropsychiatric Inventory: assessing
10 Schneider LS, Olin JT, Doody RS, et al. Validity and reliability of
the Alzheimer’s Disease Cooperative Study-Clinical Global Impression

www.thelancet.com/neurology Vol 12 February 2013